DIFFERENTIAL TOPOLOGY

100 Points

Notes.

(a) Justify all your steps. You may use any result proved in class unless you have been asked to prove the same.

(b) \mathbb{Z} = integers, \mathbb{Q} = rational numbers, \mathbb{R} = real numbers, \mathbb{C} = complex numbers,

1. [28 points] Consider X = M(n), the set of all real $n \times n$ matrices, as a manifold via its natural identification with the linear space \mathbb{R}^{n^2} . At any point p, we may also identify the tangent space T_pX with \mathbb{R}^{n^2} or M(n). Let $f: X \to \mathbb{R}$ be the determinant function.

- (i) Verify that at the point I corresponding to the identity matrix, the derivative $d_I f: M(n) \to \mathbb{R}$ sends any matrix to its trace.
- (ii) Verify that $(d_A f)(A) = n \det(A)$. Deduce that every nonzero $a \in \mathbb{R}$ is a regular value for f.
- (iii) Deduce that SL(n), the set of all matrices in M(n) with determinant 1, is a submanifold of dimension $n^2 1$, whose tangent space at I is the set of all matrices with trace 0.
- 2. [16 points]
 - (i) Let C be the plane curve $y = x^2$. Determine which of the following curves intersects transversally with C in \mathbb{R}^2 . Give brief explanations.

(a) $y = -x^2$ (b) x = 0 (c) y = -1

(ii) If we view each curve above as embedded in \mathbb{R}^3 via the canonical embedding of \mathbb{R}^2 in \mathbb{R}^3 , which of the above intersections is transversal?

3. [16 points]

(i) For the following functions $f(x, y) \colon \mathbb{R}^2 \to \mathbb{R}$, determine whether the origin is a critical point and if so whether it is nondegenerate:

(a)
$$x^2 - 2xy + y^2 + y^3$$
 (b) $\sin x - \cos^4 y$

(ii) Prove that the critical non-degenerate points of a smooth function $f: U \to \mathbb{R}$ (where U is an open subset of \mathbb{R}^n) are isolated. Deduce the same for a smooth function on an arbitrary manifold.

4. [10 points] If A and B are disjoint, smooth, closed subsets of a manifold X, prove that there is a smooth function ϕ on X such that $0 \le \phi \le 1$ with $\phi = 0$ on A and $\phi = 1$ on B.

- 5. [10 points] Do any one of the following.
 - (i) Prove that the square $S = [0,1] \times [0,1]$ in \mathbb{R}^2 is not a manifold with boundary.
 - (ii) Prove that the locus of $y \ge x^2$ is diffeomorphic to the upper half-plane H^2 in \mathbb{R}^2 .

6. [10 points] Using the classification of compact connected one-manifolds with boundary, prove that if X is a manifold with boundary ∂X , then there is no smooth map $f: X \to \partial X$ whose restriction to the boundary ∂X is identity.

7. [10 points] For a smooth hypersurface $Y \subset \mathbb{R}^M$, show that the normal bundle N(Y) is diffeomorphic to $Y \times \mathbb{R}$.